Formalizing Security Policies for Dynamic and
Distributed Systems

David Greve, Matthew Wilding, Raymond Richards
Rockwell Collins Advanced Technology Center
Cedar Rapids, TA
{dagreve,mmwildin,rjrichal }@rockwellcollins.com

W. Mark Vanfleet
Department of Defense
wvanflee@ncsc.mil

16 September 2004

Abstract

Separation kernels play a crucial role in providing security guarantees
for MILS systems. Developing useful formalizations of security guaran-
tees, however, can be challenging. In the paper, “A Separation Kernel
Formal Security Policy,” Greve, Wilding, and Vanfleet propose a formal
security policy for separation kernels and argue for its usefulness by us-
ing it in a proof involving the correctness of a firewall application. The
proposed policy has subsequently been used in the certification of the
intrinsic partitioning mechanism of the AAMP7 microprocessor. In this
paper we generalize the original security policy formalization to enable its
application to a wider variety of systems, including multiprocessor sys-
tems and systems exhibiting dynamic behavior. Finally, we argue that
security policies are most naturally expressed using graphical representa-
tions of system information flow and we show how such representations
relate to our generalized security policy.

1 Introduction

In the paper, “A Separation Kernel Formal Security Policy,”[2] Greve, Wilding,
and Vanfleet propose a formal security policy for separation kernels. For nota-
tional convenience we will follow the lead of [1] and refer to this policy as the
GWYV policy. The GWV policy is intended to be applied to separation kernels.
A separation kernel is an innovation first published in the early 1980’s for achi-
tecting secure systems. Interaction between applications, or partitions as they
are commonly called, is mediated by the separation kernel, which enforces a
security policy of information flow and data isolation on those interactions.



Because the GWV theorem applies to separation kernels, it is assumed that
the system contains some number of partitions that can be uniquely identified
by their name. One of the partitions is designated as the “current” partition.
The idea is that, during a single step of the system state, only the current
partition executes. The function current calculates the current partition from
a machine state.

((current *) => %)

The entire system state (possibly including a model of the external environ-
ment) is assumed to be composed of some number of uniquely identifiable state
elements. The unique identifier used to address a particular state element is
called a segment (or seg). The names of the segments associated with a partic-
ular partition are available from the function segs, which takes as an argument
the name of a partition.

((segs x) => %)

The values in a machine state that are associated with a segment are ex-
tracted by the function select, which takes two arguments: the name of the
segment and the machine state.

((select * x) => %)

The function selectlist is a generalization of select that takes a list of
segments and a state and returns from the state a list of the values associated
with each of the segments in the list.

((selectlist * *) => x)

The separation kernel enforces a communication policy on the segments.
This policy is modeled with the function dia (DIA : Direct Interaction Allowed)
which, given a segment name, returns the list of segments allowed to influence
value of that segment during a single step of the system.

((dia *) => %)

The function intersection takes two lists and returns a list containing only
elements common to both arguments.



((intersection * *) => %)

The final function appearing in the GWV theorem is next, which models
a single step of the system state. The function next takes as an argument a
machine state and returns a machine state that represents the effect of a single
system step.

((next *) => %)

The GWYV theorem, then, is expressed as follows:

(defthm separation
(let ((dia-segs (intersection (dia seg) (segs (current st1)))))
(implies
(and
(equal (selectlist dia-segs stl)
(selcctlist dia-segs st2))
(equal (current stl)
(current st2))
(equal (select seg stl)
(select seg st2)))
(equal (select seg (next st1))
(select seg (mext st2)))))

This theorem states that the effect of a single step of the system state on an
arbitrary segment of the state, seg, is a function of the set of segments that are
both allowed to interact with seg and are associated with the current partition.

The GWYV paper argues that a good specification of a system component has
two characteristics. First, a good specification can be formally proved about a
particular system component. Second, a good specification can be used in the
formal proofs of more abstract properties of larger systems that build upon
the evaluated system component. The GWYV policy has demonstrated both
properties. The GWV policy has been proven to hold for the AAMP7 intrinsic
partitioning kernel, and it has been used to verify information flow properties
of a simple firewall. Given these observations and the above criteria, one might
conclude that the GWYV policy is, in fact, a good specification for a separation
kernel.

Despite being a good specification, however, GWV still has several limi-
tations. While GWV has been shown to capture a notion of separation, and
although it was shown to be useful in reasoning about certain systems, the for-
mulation of GWYV is still too restrictive to be used to describe a number of other,
obviously useful systems. In this paper we identify three specific shortcomings



of the original security policy statement and propose an alternative formulation
to help address those issues.

2 GWYV Shortcomings

The first problem with GWYV is a problem in using it to prove larger system
properties. This issue was first illustrated by example in [1]. In the example,
the original GWYV firewall system is extended by adding a simple monitoring
partition that is able to read the inbox of the firewall partition. In the resulting
system, one can prove that the GWV policy does not prohibit the monitoring
program from writing information directly into the outbox. In fact, any partition
that can read from any element of the DIA of a segment can then, according
to the policy, modify the segment using that value. Note that, while DIA
does capture the notion of information flow, it does not capture the intent of
the system designer that only certain partitions are allowed to actually move
the information. What we conclude is that there are certain desirable system-
level properties that cannot be adequately expressed using the existing GWV
theorem formulation. What is needed is the ability to model system behavior
with sufficient detail to capture the intent of the end user.

A second problem with GWYV is in proving that a particular system imple-
ments the policy. Many interesting systems are dynamic in nature. Dynamic
systems impact security in many different ways, but one important manifesta-
tion is in the creation of covert channels. The AAMP7 has a static schedule and
a kernel space which can be shown to be free of interaction from user partitions.
Unfortunately, this is not necessarily true of all systems proposed for use in se-
cure applications. Rather, many useful systems have covert channels that do, in
fact, allow small amounts of information to leak from one partition to another.
The standard approach for dealing with covert channels is to identify and an-
alyze them to provide assurance that the information flow is too small or too
difficult to exploit to be of any practical concern. This works well from a prag-
matic standpoint. Unfortunately, from GWV’s rigorous, mathematical stand-
point, any deviation from the ideal system renders the GWV theorem effectively
useless'. What is needed is a mechanism for employing informal evaluations in
the final theorem statement without sacrificing the rigorous mathematics that
provide high degrees of assurance.

The final concern with the GWYV theorem is that it is simply too specific.
There is already a move afoot to define MILS at the network level. The GWV
theorem was developed for, and really only applies to, single processor systems.
It would be very difficult develop an accurate, usable model of a distributed,
asynchronous system that would satisfy the GWV theorem. What is needed is

IThe theorem may be either unprovable or it may not be inductively strong, depending
on how the theorem is instantiated and how the covert storage channel is manifested. An
inductively strong GWYV theorem guarantees that once the system has attained a secure
state, it will remain in that state. Theorems that are not inductively strong cannot guarantee
that the system will remain in a secure state and, as a result, are effectively unusable.



a more general characterization of separation that can be applied effectively at
different levels of system hierarchy.

In the remainder of this paper we present generalizations of GWV that
provide increased specificity, enable more flexible application, and allow for the
characterization of a larger class of systems.

3 Agents

To increase the expressiveness of the GWV theorem we introduce the concept
of agents. The GWV theorem uses DIA to characterize the overall information
flow behavior of the system. In the monitor partition example, however, simple
information flow fails to accurately reflect the intended security property. GWV
fails in this case because it includes no notion of who is allowed to move the data.
We propose simply refining the notion of DIA to include a notion of a responsible
entity. This can be accomplished through the use of agents. An agent can be
thought of as a logical or computational identity (usually a partition) that may
carry with it a certain level of trust.

In perhaps the simplest model of agents, they are interpreted as partitions.
This model is convenient because we wish to associate certain properties with
particular partitions: a partition is trusted, a partition is a firewall, etc. A more
general notion of agents, however, interprets them as arbitrary predicates over
state. An interpretation of agents would then map agent names in the graph to
particular predicate functions over the state?. Agents, for example, need not be
exclusive and multiple agents may be active at any time.

In our new formulation of GWV we replace the notion of current with the
notion of agents. This change allows us to characterize systems with more
than one active agent (partition) at any given time. The dia function is also
replaced with a function, agent-dia, that selects only those dependencies that
are allowed based on the currently active set of agents. The transition from dia
to agent-dia also allows us to remove the intersection computation, which is now
done implicitly in agent-dia. Removing the intersection computation also allows
us to simplify our hypotheses by removing the statement equating current in
the two worlds and the one equating the value of seg in the two worlds. We
can do this because we assume that dependencies on self and dependencies on
current are included in the agent-dia function and they are not at risk of being
lost in the intersection computation®. The new theorem appears as follows:

(defthm agent-separation

2 An agent could also be a pair: a predicate and a state transition function. The semantics
of such an agent would be that, if the predicate is satisfied, the associated function would, at
least from the perspective of the node, characterize the behavior of a single step of the system.

3In the original GWV formulation, because dependencies on self and current were in-
cluded in the hypothesis by default, they could actually be omitted from the dia function. In
observing only the dia function, one might erroneously conclude that the value of a particular
segment does not depend on the value of current or self, when, in fact, these dependencies
are implicit in the formulation of the theorem. In the new formulation, all dependencies are
explicit and are included in the computation of dia-agent.



(implies
(let ((dia-seg (agent-dia (agents stl) seg)))
(equal (select-list dia-seg stl)
(select-list dia-seg st2))
(equal (select seg (next stl))
(select seg (next st2))))

While the hypothesis of this theorem appears asymmetrical, employing (agents
st1) while not mentioning (agents st2), proving that a particular system satis-
fies this theorem will require that the select-list equality hypothesis imply that
(agents st1) is equal to (agents st2)*. Note that for a a specific segment, seg,
if one were to compute, over all possible agents, the set of segments returned
by agent-dia, the resulting set would be equal to the set of segments returned
by the original GWV dia function. The introduction of agents in this new
formulation makes it strictly more expressive than GWYV, thus enabling us to
describe properties that otherwise could not even be expressed in GWYV. Using
this new formalization, it becomes possible to accurately formalize the intended
behavior of the monitor system and prove the desired property.

4 DIA and Information Flow Graphs

The DIA (direct interaction allowed) function is really the heart of the GWV
theorem. The DIA of a particular segment of the system state is the set of
all segments in the state that may contribute to the computation of the value
stored in seg in the course of a single system step. In the broadest sense, the DIA
relationship is the security policy enforced by the system. The DIA function in
the original GWYV theorem characterizes the overall information flow behavior
of the system. Presumably it is the DIA relationship that system designers
would evaluate in a larger context to establish the suitability of the system for
a particular purpose. To the extent that DIA can be programmed into the
system it can be used to reflect a larger security policy. To the extent that DIA
is determined by the system itself, the resulting communication policy must be
evaluated in the context of the larger system to establish viability.

Implicit in the DIA function is the notion of an information flow graph:
a graph describing how information flows in the system. In the information
flow graph implicitly defined by the function agent-dia, segments are stored as
nodes and an information flow from segment A to segment B is modeled as an
edge that leads from node A to node B that is labeled with the agent responsible
for the information flow. With this model in mind, agent-dia can be viewed
as a function that returns from the information flow graph a set of all of the
nodes with edges that lead to a particular segment and are labeled by one of
the specified set of agents.

4The actual relationship between (agents st1) and (agents st2) is more subtle and is prob-
ably something more like (agent-dia (agents st1) seg) is equal to (agent-dia (agents st2) seg).
In some degenerate circumstances even this is stronger than it needs to be.



This graphical view of information flow is important because the circle and
arrow diagrams typically used to describe communication policies at more ab-
stract levels are information flow graphs as well. Our proposal is to extract the
information flow graph, implicit in the DIA function, make it explicit, and ex-
port it as the top level formalization of the system security policy. The resulting
graph can then be evaluated, compared, or instantiated with other information
flow graphs at the appropriate level of abstraction.

This observation about the nature of the information flow graph implicit in
the GWYV theorem hints at why the GWYV theorem is too restrictive to apply
to many systems. It is too restrictive precisely because GWYV is a property of
the information flow graph, rather than a specification of that graph. No single
property of an information flow graph can hope to be satisfied by all potentially
interesting applications. Rather, the formalization of a security policy should
focus on what the security policy is rather than on a particular aspect of what
the policy might do, as does GWV.

4.1 The Graphical Abstraction

The common criteria requires the development of some number of models of
system behavior. At the top we have a formalization of the security policy that
we hope to implement. At the lowest level there is a model of system behavior
that can be mapped to the implementation without the need for further design
decisions. In between there are some number of model abstractions, each of
which commutes with the next higher level via some abstraction.

The graphical representation of information flow can be used as one of those
models because an accurate graphical representation of system information flow
is a valid abstraction of system behavior. We say that a particular graph is
an abstraction of the system if it satisfies a commuting relationship. It is the
commuting theorem that connects the sate-based representation to the graphical
representation of information flow. The graphical commuting theorem has the
following form:

(defthm graphical-abstraction
(equal (next st)
(apply-graph graph st)))

This theorem says that the function next adheres to (or, is characterized
by) the information flow policy specified by graph as interpreted by apply-
graph. Note that, with the appropriate definition of apply-graph, we can prove
the original separation theorem using this formulation (It is, after all, just a
property of the graph). Note too that the graphical model of system behavior
is much simpler and much more abstract than the functional model. Whereas
the functional model explicitly describes what the system does, this graphical
model merely describes how it does it. The low-level model may require many
sophisticated data structures and functions, composed in a variety of ways to
describe the functionality of the system. The graphical model, on the other



hand, requires only a single representation of the system and a single operation,
graph composition, in order to describe system behavior.

4.1.1 A note on graph utility

Keep in mind that the simplest graph to verify is the completely connected
graph that says that everything depends upon everything else. This, however,
is not a very useful graph when it comes to using it to implement a specific
security policy. Graphs become more difficult to verify as they become more
restrictive. More restrictive graphs, however, are generally more useful. Note,
however, that just because we can construct a graph with a particular property,
it doesn’t mean that the system will satisfy that graph. If the graph does not
accurately reflect the behavior of the underlying system, it will be impossible
to prove that our system implements that graph.

4.2 A Graphical Security Policy

In GWYV, the final security property was expressed in terms of the system state
(two parallel states, to be exact). We would call this a state-based representa-
tion of our security policy. More generally, however, the system security policy
is characterized by its information flow graph. Such a characterization of the
system security policy is certainly less concise than GWV, but it is far more
expressive. Given this graphical representation of information flow in the sys-
tem, we can now interpret statements about information flow in the system as
statements about this graph. GWYV is but a single instance of an unbounded
number of possible properties satisfied by the information flow graph of the sys-
tem. In addition, many interesting security properties can be expressed quite
naturally as graph-theoretic properties, but only with difficulty (or not at all)
in a state-based representation.

4.2.1 Firewall Analysis

In a firewall system we might wish to say that the only way information can
move from the red location (R) to the black location (B) is thru the firewall (F).
This statement can be interpreted as the graph theoretic statement: any path
leading from the black node to the red node must first pass through a firewall
edge. Note how natural it is to state this theorem, especially in contrast with
the original GWV firewall formulation that relied on a state-based formulation.

An equivalent formulation of the same statement is to say that if, from the
graph we remove all edges labeled with F (the firewall agent), then, in the
transitive closure of the modified graph, the black node does not depend upon
the red node.

4.2.2 Covert Storage Channel Analysis

In order to make useful statements about systems containing covert storage
channels, we employ reasoning techniques analogous to the ones used in mod-



eling a firewall. In the case of the firewall, we said that the only information
flow between red and black was via an edge labeled by firewall. In the case
of covert storage channels, we first identify all of the segments involved in the
covert channel. We then say that, modulo the covert storage channels, the sys-
tem security policy is acceptable. We do this by demonstrating that every path
that does not pass through a covert storage channel node is consistent with the
desired security policy.

There is the possibility that the storage channel is used by two sources: one
being the covert channel and the other being a serious exploit. Simply ignoring
the storage channel in this case would give free reign to the serious exploit. For
exactly this reason, thorough analysis of covert channels is essential.

5 Conclusion

We identified three weaknesses in the GWYV separation theorem: it is not suffi-
ciently expressive, it is impossible to satisfy with a large class of useful systems,
and it is targeted too specifically to single processor systems. We then demon-
strated how to generalize the original security policy formalization to enable its
application to a wider variety of systems, including multiprocessor systems and
systems exhibiting dynamic behavior. Finally, we argued that security policies
are most naturally expressed using graphical representations of system infor-
mation flow and then showed that such representations naturally satisfy our
generalized security policy.

References

[1] Jim Alves-Foss and Carol Taylor. An Analysis of the GWV Security Policy.
In ACL2 Workshop 2004, November 2004.

[2] David Greve, Matthew Wilding, and W. Mark Vanfleet. A Separation Kernel
Formal Security Policy. In ACL2 Workshop 2004, June 2003.



