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Abstract

Three technologies must be advanced to enable the migration of reconfigurable computing from
research to security and safety critical applications. Those technologies are rapid dynamic
reconfiguration, multiple user support, and secure application separation. All three technologies are
necessary to meet the requirements of future avionics, security, and defense applications.

In this paper, we present a reconfigurable computing architecture that is explicitly secure for multiple
user environments and supports varying degrees of criticality and privilege. At the core of our secure
reconfigurable architecture is a real-time Multiple Virtual Machine (MVM) model in a direct execution
JVM microprocessor [AW97,DAG98A]. Our architecture provides hardware-enforced guarantees of
resource separation. We have extended this separation guarantee to support reconfigurable logic
devices.

Implementations of our architecture can be verified to be safe and secure [JMR98]. We outline our
formal verification techniques, which are published and can be applied to modern safety-critical and
security-critical development environments [DAG98B, SPM96]. We detail an approach for formally
validating that our architecture enforces separation.

An architecture should be developed with open system standards to exploit future technological
advances. For that reason, we employ Java™las a cornerstone of our design. In our vision, the same
Java™ classfiles can be used on a computer system with or without reconfigurable computing
capabilities. We use the Java™ software method invocation interface to execute hardware algorithms
on the reconfigurable computing elements. We present these concepts and preliminary results from our
system simulations [SAS98].

1. Introduction

The Collins division of Rockwell has been designing and producing avionics quality microprocessors for 25 years.
A heritage of Collins microprocessors exists in scores of avionics platforms. One product, the FCP 2000, is the only
microprocessor certified by the FAA for multiple similar processor applications because of its level of verification.
A more recent product is the JEM1 microprocessor, which is the first hardware implementation of the Java Virtual
Machine (JVM) instruction set [AW97].

The Adaptive Computing System (ACS) program has provided significant guidance and created advancements for
reconfigurable computing architectures [ACS98]. We describe in this paper an architecture that builds on these
efforts [LAJ98] and explicitly supports three key ACS technologies: rapid dynamic reconfiguration, multiple
application support, and secure application separation. Successfully providing these three technologies will enable
the migration of reconfigurable computing from research to military and commercial development.

T™ _ Java™ is trademarked by Sun Microsystems, Incorporated.
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Our reconfigurable computing system design is unique in its explicit support of multiple applications angtitssecure

separation of those applications. This system uses a direct-execution Java'™ microprocessor, the JEMLIJava ™
provides an open system standard for our software development and our hardware configurations. We intend to
apply recent Rockwell Collins advances in verification to ensure critical system properties.

2. Secure Reconfigurable Architecture

We have created a reconfigurable computer architecture that is explicitly secure. The premise of this architecture is
conceptually simple. Modern general-purpose microprocessors often include a memory management unit. This unit
monitors all memory accesses for all processes executing on the system. The unit only allows each process access to
specific ranges (or partitions) of memory. This partitioning ensures that processes cannot affect the memory space of
other processes. If an architecture memory-maps all reconfigurable logic (both the configuration and access logic),
then those Reconfigurable Computing Elements (RCEs) become explicitly partitioned. We illustrate this
architectural concept in

Our research architecture presents an innovative approach to providing runtime support for embedded systems based
on widely-adopted industry standards (e.g., Java™) coupled with our proven implementation expertise for efficient,
low-power, small footprint, ruggedized avionics systems; see Rockwell Collins has developed the world's
first direct execution Java™ microprocessor, the JEM1. The JEM1 features efficient support of object-oriented
constructs; very low thread latency; a runtime system written completely in Java™; and a uniquely capable static
linker which pre-resolves Java™ references, eliminates unnecessary methods, fields, constants, and classes, and
produces ROMable images. The JEM™ platform is unique in its efficient support for the execution of Java™
bytecodes, its emphasis on hard real time, and its safe and secure multiple virtual machine (MVM) execution.

We intend to add reconfigurable computing to our JEM2 system architecture; see Our reconfigurable
computing system places the host processor and a set of RCEs on a local bus. A Partition Management Unit (PMU)
separates the local bus from the memory subsystem. The PMU monitors all memory transactions, whether
originating from the host microprocessor or from one of the RCEs, to ensure that the requesting task has the
authority to perform the transaction. If not, the PMU inhibits the transaction. Only the run time executive has
authority to configure the RCEs and the RCEs can only modify devices and memory in their partitions. These
simple, PMU-enforced transactions ensure that no processes or RCE algorithms will affect other processes or the
runtime executive. Our Partition Management Unit (PMU) is the cornerstone of our secure reconfigurable
architecture.

An impact of this design decision is that all RCEs must be configured to use the local bus to access and update
memory values. This restriction limits the flexibility of the RCEs, but offers a stable interface for the development
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Figure 1. Architecture Extensions Required for Secure Reconfigurable Computing

™ _JEM™ is trademarked by Rockwell Collins, Incorporated
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JEMTNI Microprocessor Family Features Characteristic
Efficient, low power, small footprint, ruggedized system Versatility

Widely adopted industry standards Compatibility
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Reconfigurable, dynamic loading Reconfigurability
Safe and secure partitioning Security

Software component substrate Extensibility

Figure 2. Rockwell Collins JEM™ Microprocessor Family Features

of future reconfigurable computing elements. This stable interface also enables the development of hardware
algorithms to a standard open-system interface. For local bus control, we intend to construct partition-aware
arbitration logic that allows only certain entities to arbitrate for control. This control is dependent on the active
partition. By disallowing access to the local bus, this scheme suspends the operation of certain components in favor
of others in the same way that software processes are suspended during a processor context switch. Initially, we do
not intend to share RCEs between partitions and state saving and restoration will not be required.

3. Multiple Application Support

Our current development uses the second generation JEM2 microprocessor, which is designed specifically to support
a partition management unit (PMU). The PMU and the JEM2 runtime environment provide secure partitioning (or
separation) of Java"™ resources. We have implemented a Multiple Virtual Machine (MVM) model in the JEM2
microprocessor, which will form the core of the secure reconfigurable architecture. This model guarantees that
multiple programs can execute concurrently, with hardware-enforced guarantees of resource isolation.

The PMU ensures separation of applications; see The separation required by the Federal Aviation
Administration (FAA) for safety critical applications is similar to the separation required by National Security
Agency (NSA) for multiple level security [JIMR98]. Applications that require separation from one another will be
relegated to separate partitions. The PMU will be programmed to provide each partition access only to it allocated
resources. Resources include memory space, processing time, and RCEs.

The PMU to be used in this architecture is similar to the Memory Management Units (MMUSs) found on many
traditional computer systems. However, while typical MMUs provide protection at the task level, the PMU is
designed to provide protection at the partition level, where each partition may be thought of as a complete Java™
Virtual Machine (JVM).

Another distinction between the PMU and a typical MMU is that the PMU is responsible for enforcing temporal
isolation of the various partitions. The PMU guarantees that each partition consumes exactly its allocated share of
the processing time. It monitors the processor via a watchdog timer and generates a non-maskable partition interrupt
to force synchronization. This temporal partitioning allows the system designer to enforce not only worst case
timing but also best case timing. This “invariant performance” is at the heart of our contract with the application
developer [MMW99]. It allows us to guarantee that the operation of an application in this partition will be absolutely
independent of the other partitions. Thus, any validation or verification work performed on an application in
isolation will be guaranteed to hold in a composed system. It is the extension of this work to the reconfigurable
computing elements that allows us to make strong claims regarding the safety and security of such a system.

The RCEs are resources that can be allocated to specific applications (partitions) and treated as logical extensions of
the software executing on the JEM1. As such, the RCE will be allowed to make memory transactions only during
those times allocated to its associated software partition. Because the PMU monitors all transactions from the RCE,
it will allow the RCE access to only the memory space allocated to its owning partition. When the partition and its
RCE is idle, the RCE will be denied access to the local bus and will be incapable of illicit monitoring of other
partitions. In this way, the RCE will be unable to impact the activity of any other application in any other partition.
Given this design, the system designer can ensure that malicious applications and RCEs cannot corrupt or monitor
the operation of another application or RCE. We illustrate many of these concepts in

4. Secure Partitioning
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Although it is theoretically possible to approach the high levels of assurance desired for this program using
commercial microprocessors, the JEM™ microprocessor has been specifically designed to incorporate features
supporting safety and security while providing rapid partition context switching. By incorporating features that
support strict time and space partitioning, we can build systems that, by construction, provide a high degree of safety
and security.

Our target applications for multiple-user reconfigurable computing platforms require the highest level of assurance.
Our system is designed to control partitioning despite the extreme volatility of reconfigurable systems, but we
recognize that subtle problems in our implementation could potentially have catastrophic effects. Because
verification costs dominate the total development cost of safety-critical software, Rockwell Collins has invested
heavily in modular verification. We expect to provide a contract with developers that will allow them to verify their
software once in isolation and apply the results of that verification to systems composed of multiple applications of
varying levels of criticality. Using this common model approach validates the model through its use as a simulator
and allows us to formally verify properties of the system.
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Figure 3. Multiple Application Support

Our reconfigurable architecture supports multiple applications with varying degrees of criticality and varying degrees
of privilege. It maintains multiple application separation whereby each application retains all its verified properties.
It supports these applications in a readily composable form such that some applications can be added or removed
without impacting the verified properties of the remaining applications.

We plan to analyze our implementation to ensure that its design enforces the separation required to support multiple
users and multiple security levels in an adaptive computing system. Any approach to accomplishing this must
address each of three fundamental challenges: model construction and validation, separation properties, and
verification of model properties. We describe our technical approach to each of these challenges.

5. Formal Verification

The goal of verification is to analyze a system model and demonstrate that a complex design has certain required
properties. Such verification has been accomplished on a variety of different targets and is similar to our verification
approach [WRB89A, WRB89B, RSB96, SPM96, MMW97]. In particular, the use of so-called "mechanical theorem
provers" as digital design tools is an active area of research, particularly with regard to how these tools can be
integrated into the fast-changing world of digital design [DSH98]. Our current verification efforts are distinguished
from most similar work in two main respects: our modeling approach allows for both analysis and model validation,
and our use of automated analysis. Projects that have used reasoning tools to establish the correctness of computer
system designs — both at Rockwell Collins and elsewhere — have often been very labor-intensive, and the analysis
sensitive to minor changes in the system’s specification or implementation [MMW97, DAG98B]. We believe that our
emphasis on analysis automation will help overcome these challenges.
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5.1 Model Construction and Validation

We wish to guarantee that our reconfigurable system safely and securely supports multiple users at multiple security
levels. The first hurdle is to identify what description of the implementation we use to perform the analysis. This is
a deceptively difficult challenge, because the model we create must not only support our analysis but must also have
sufficient fidelity that we are confident that our analysis applies to the actual system.

There are many languages and tools for modeling and analysis, and we have used some of them in our work. In a
Collins microprocessor verification effort [SPM99], we used the PVS theorem proving system's logic [SO98] to
describe the operation of the microprocessor's microarchitecture. We used its theorem prover to characterize and
verify the operation of much of the microprocessor's microcode. We believe, however, that this possible approach is
not ideal for our system because the model must be validated and be part of the development process. Another
approach for providing a system model is to use the system design directly. A VHDL description of the processor
element, for example, obviously provides a reliable description of the operation of that processor. The kinds of
errors that could cause discrepancies between the model and the actual system, such as fabrication errors, are already
considered in the development process. This kind of model is inherently self-validating, and because the design is an
artifact of the development process it will be maintained as a matter of course.

We intend to build a simulator that can serve as an analyzable artifact to verify the system; see We will use
the simulator to develop the system implementation, and it will be validated by its use by the system developers who
are most familiar with its expected operation. The simulator will then serve as a model for our analysis. As an
artifact of the design process, the model will not become out-of-date or otherwise fall out of sync with the actual
design, and its use as a simulator during development will provide a high level of validation. Further, it will be at a
higher level of abstraction than the design, because it will describe the expected behavior of the system rather than its
implementation in hardware, which will simplify analysis.

A significant challenge is to provide adequate simulator performance to integrate it into a real design environment.
We have investigated combining simulator and analysis models in the context of industrial microprocessor develop-
ment and have shown that this can provide simulator performance close to conventional simulators written in the C
programming language [MMW98A].

5.2 Separation Properties

Our system will use a Partition Management Unit (PMU) to separate applications with multiple security or safety
levels; see §E] We will determine a policy under which users are to be separated, and how that policy translates into
specific system implementation properties that can be checked against our implementation. In this section we
discuss safety-related work that is relevant to this problem and describe our approach to this challenge.

We have faced the need for separation in the context of the construction and certification of integrated modular
avionics (IMA). Broadly speaking, we have taken a very static, deterministic approach that we call invariant
performance [MMW99]. Our approach is also reported in [JMR98], where it is referred to as the “gold standard”
partitioning property. The idea is to guarantee each partition predefined memory and CPU resources so that it can be
integrated with other applications with no effect on its behavior. This approach allows separate verification of
applications, because an application can be verified within a partition in the absence of other applications with
confidence that the same performance will be seen after integration. Our IMA approach to guaranteeing safety
properties is also useful for demonstrating security properties, because it requires a completely static architecture.
Consequently, we expect the technique we have developed to verify separation in a safety context to translate well to
security needs.

It will be possible to analyze the security requirements of our architecture and derive a set of implementation
properties that are necessary to achieve these requirements. For example, our reconfigurable system will have
multiple users, and the PMU ensures that the memory spaces of the users are distinct in order to protect the memory-
mapped FPGAs of other users. However, the PMU can be programmed by the processor when the processor is in a
privileged mode, and so perhaps a user could connive to eliminate the check. We may validate this property by
analyzing and guaranteeing that in our reconfigurable system the processor cannot execute a privileged instruction
when executing a user's code. We will build our reconfigurable system with static resource allocations and will
derive a list of crucial properties that must hold of an implementation.
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Figure 4. The Use of a Single Model for Simulation and Analysis Provides Model Validation

5.3 Verification of Properties

We have described in previous sections our approach to modeling our reconfigurable system and how we will
validate it, and generally some of its required properties. In this section, we describe our approach to ensuring that
these properties hold of the model.

Of course, computer system correctness is notoriously difficult to establish. Analysis of computer system models has
the potential to improve the reliability of computer system designs, but such analysis is often very complex and hard
to get right. Mechanical tools such as PVS and ACL2 can help overcome both of these problems by automating the
analysis, but their use can be time-consuming. For realistic-sized applications, the inevitable mistakes in proof
development or changes to system design or specification will be very disruptive.

We have pursued several approaches to make the analysis of real computer systems more practical. Our basic
approach is to make the analysis as automatic as possible. This allows for the establishment of correctness properties
initially, but even more importantly it makes realistic the guarantee of correctness properties in the face of system
and specification changes. Our development of "robust” software execution analysis is described in [MMW97]. By
adding certain sound reasoning rules we make the analysis of code fragments nearly automatic. We developed
another tool [DAG98B] that automatically derives a symbolic expression for each sequence of the microcode for the
JEM1 [AW97,DAGY8A].

Using these approaches to automation, we intend to develop "push-button” analysis of some security properties of
the system model. These proofs will regenerate with little or no manual effort when the model changes in an
irrelevant way, and will rely on symbolic simulation of the processor and PMU components. For example, the
property described in the previous section — that a user can not execute a privileged instruction — will be
demonstrated by showing that no processor instruction that the user can execute can operate in a privileged way.

Our approach to verifying correct reconfigurable and secure operation will support the development of a dependable
multiple user reconfigurable system. We will build an analyzable model of our reconfigurable system that is
validated through its use as an efficient simulator by system developers [MMW98A]. Our current work to build
dependable integrated modular avionics through completely static resource scheduling [MMw99] will help guide our
derivation of needed system properties. Our recent advances in the microprocessor verification through symbolic
simulation are required to accomplish the “push-button” analysis [DAG98B]. Our verification and validation
approach is experimental, but it is achievable in part because it leverages recent Rockwell Collins research.

6. Open System

The United States Government has defined its requirement of open systems as the ability to provide portability of
software across standard system platforms, interoperability between applications, connectivity between systems,
flexibility in the management of the information systems' resource and much greater choice in systems procurement
[0GO098]. Compatibility, portability and interoperability are central. Open systems allow users to communicate and
share data across different platforms. Analyzing these definitions, we contend that the key benefits of having an
“open” reconfigurable system will be portability, compatibility, and supportability.
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We intend to provide these four open-system benefits on our secure reconfigurable computing system. We recognize
that a system must be developed with open system interfaces, software, and hardware configurations to exploit future
technology advances. By using open system standards it is possible to leverage a wide range of work and always
provide the best system solution.

Portability allows the same software to run on multiple platforms. We intend to employ Java™ as our primary
software application environment. Applications written for the system and compiled into class files will be portable
between various computer systems. The behavior of the application will be independent of whether or not the
computer system provides reconfigurable computing capabilities. We will use the same Java™ method interface to
execute hardware algorithms on the reconfigurable computing elements. Using this open interface will enable
implementation independence from the application developer’s perspective. Our secure reconfigurable computing
system will execute code compiled to JVM bytecodes independent of the development platform.

JVM classfiles from any system will run on our reconfigurable system and the classfiles from our system will run on
any other JVM supported system; see Many developers are familiar with Java™ and its JVM because is an
open specification. Java'™ is becoming a universal medium for exchange - not only for software, but for binaries,
architecture, ideas, and hardware definition. The JEM™ processor was designed to execute the Java™ virtual
machine instruction set natively. This provides for high performance on object oriented code. The use of the JVM
as the development platform provides other advantages. It provides a widely available host based development
environment for code developed for execution on our system. Host based development has many advantages
including extensive debugging and verification capabilities and minimal reliance on the availability of target systems.
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Figure 5. Portability of Java" Bytecodes Across all Platforms

We will use the static linker of the JEM™ to recognize and resolve the hardware methods and make links to these
routines. The static linker performs functions similar to that of the dynamic loader component of a software Java™
virtual machine interpreter, but does them prior to Java™ execution. A constraint on this portability is that the
reconfigurable architecture will only be utilized if the program uses the methods defined in the library of hardware
methods. These routines will be built from compiled VHDL code or use software translation tools to maintain
portability to multiple FPGA hardware. Exploiting the object-oriented nature of Java™ allows the system to choose
an RCE most applicable to the data upon which it must operate. The JVM method invocation interface provides a
clean contract between the software developer and the hardware implementation. We intend to exploit the JVM
calling convention to provide a nearly seamless integration between the hardware implementation and the application
software.

Compatibility, in our reconfigurable computing environment, is attained with the FPGA method invocation interface
and its compatibility with the traditional software JVM method invocation interface. The invocation of FPGA
methods will be transparent to users and portable across many systems. We intend to pass parameters to hardware
methods through the same JVM method invocation protocol. Parameters are pushed onto the JVM process stack and
results are returned on the stack. We have designed and simulated an RCE using this interface [SAS98].
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A system architecture should be independent of the architecture of the reprogrammable devices in order to leverage
advances in technologies. To remain compatible with all other JVM platforms, invocation of FPGA methods will
simply use the JVM method innovation interface. This can be accomplished by using the JEM™ static linker to
create linkage to those routines. The method invocation interface is used between the JEM™ and the hardware
methods in the RCEs or FPGAs. Because the interface is completely device independent, it allows for the use of a
broad set of components. For this reason, our reconfigurable system can be implemented using a wide variety of
RCEs and therefore is capable of leveraging any technological improvements in the intrinsic performance
capabilities of the RCEs themselves, such as reduced programming time and modular programming capability.

Obviously, the library of hardware methods will be FPGA dependent. However, hardware methods can be compiled
from FPGA-independent VHDL to the FPGA dependent programming information. Translating programming
languages directly to VHDL is a recent technology [RG98] that will aid the development of these hardware methods.
Our research team has developed a manual process to convert JVM bytecodes to VHDL [SAS98]. We have applied
this process to a small Java™ utility that computes a dot product of two vectors; see The simulated
performance of this hardware method on the JEM™ microprocessor is 70 times faster than the original software dot
product method. We are currently working on automating the process. We expect the open system interface of our
approach will enable the incorporation of other translation research for other software languages to VHDL.

Another final aspect of supportability is that software interfaces will never have to be changed due to changing
FPGA technology. This characteristic is vital to avionics and defense products because of their long life times.
Rockwell Collins often supports such products for twenty to thirty years.
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Figure 6. Hardware Method Production

7. Vision - Adaptable High Integrity Computing

Rockwell Collins is a supplier of high assurance systems for safety critical and secure applications in avionics and
communications products. Our products demand increased performance and reduced power consumption and size
while maintaining necessary system integrity. These demands place difficult constraints on the system designer.
Advanced computing environments typically achieve high performance at the cost of reduced margin in both the
electrical and the overall system complexity [DWJ98].

Reconfigurable computing is a technology that offers high performance computing while maintaining high system
integrity. The traditional approaches to adaptable computing have been to employ reconfigurable logic elements to
implement portions of the computing environment [LAJ98]. While these approaches may provide the desired
performance enhancement, they do not address system integrity. The Rockwell Collins concept is to implement
reconfigurable logic in an architectural environment that enforces protection and isolation of critical system
resources and prevents any violation of system integrity.

JENSEN Page 8 F3



Rockwell Collins Secure Reconfigurable Computing

iIIustrates our vision for the introduction of adaptive computing technologies in avionics, security, and
defense products. Previous research and product development at Rockwell Collins has provided the experience,
tools, and methodologies to support hardware/software co-design and design correctness. Our current activities
focus on the research and development of the artifacts necessary for a secure reconfigurable architecture. Future
research will use this secure architecture to create a high-integrity computing environment. We envision several
product development efforts using this environment to produce unique, adaptive computing product for our military
and commercial customers. Products such as flight control systems, classified applications, global positioning
satellite, communication products, and entertainment can all benefit from this secure reconfigurable computing
architecture.
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Figure 7. Adaptive High Integrity Computing Vision

8. Conclusion

Reconfigurable computing in the fashion advocated by DARPA and this paper is not used today in avionics and
government systems. Microprocessor speeds typically limit the performance of many of today’s systems. When
additional performance is required, designers use separate ASICs or PLDs to accelerate specific functions. Secure
and safety critical partitioning is done today with physical partitioning between multiple microprocessors. This
limits exchange of data between processors to narrow bus bandwidths and effectively doubles the number of parts in
a system. Using secure reconfigurable computing in these systems has the potential to decrease systems costs,
reduce part counts, and increase reliability, maintainability, and serviceability. The major limitation of our approach
over these existing approaches is their acceptance and validation by defense and security agencies. We hope to
begin the process of collecting security requirements and address this limitation.
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